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1. THE LAPLACIAN OPERATOR

Two weeks ago, we talked about Hecke eigenforms, namely functions on the upper
half-plane that are eigenvectors for Hecke operators. In this case we’ll be considering a
different operator—in fact, one that is so different it is differential—namely, the Laplacian.

Definition 1.1. The non-Euclidean Laplacian ∆ is a second-order differential operator acting
on functions on the upper half-plane, given by

∆ = −y2
(

∂2

∂x2 +
∂2

∂y2

)
.

Fact 1.2. The non-Euclidean Laplacian is invariant under the action of SL(2, R). Explicitly,
if g ∈ SL(2, R) and f is any smooth function onH, then

∆( f ◦ g) = ∆( f ) ◦ g.

Definition 1.3. A Maass form for Γ(1) = SL(2, Z) is a smooth function f on H satisfying
the following three conditions:

(i) For all γ ∈ Γ(1), f (γ(z)) = f (z).
(ii) f is an eigenfunction of ∆.

(iii) For some N ∈N, f (x + iy) = O(yN) as y→ ∞.
A Maass form f is a Maass cusp form if it also satisfies:

(iv) The following integral is 0 for all z ∈ H.∫ 1

0
f (z + x)dx = 0.

Equivalently, the 0th Fourier coefficient of f is 0.

2. EISENSTEIN SERIES

One of the most important examples of Maass forms are the Eisenstein series E(z, ν + 1
2),

where

E(z, s) = π−sΓ(s)
1
2 ∑*

m,n∈Z

ys

|mz + n|2s .

(We write this as E(z, ν + 1
2) for functional equation reasons.) This Eisenstein series has

two properties that the previous Eisenstein series we’ve seen, given by

Ek(z) =
1
2 ∑*

m,n∈Z

(mz + n)−k
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does not. Firstly, E(z, s) is not holomorphic as a function of z, and secondly, it is automorphic
rather than modular. In other words,

E(γ(z), s) = E(z, s)

for γ ∈ SL(2, Z).

Theorem 2.1. E(z, ν + 1
2) is a Maass form.

For the proof, we will need the Fourier expansion of E(z, ν + 1
2).

Proposition 2.2. The Eisenstein series E(z, s) has Fourier expansion

E(z, s) =
∞

∑
r=−∞

ar(y, s)e2πirx,

where
a0(y, s) = π−sΓ(s)ζ(2s)ys + πs−1Γ(1− s)ζ(2− 2s)y1−s

and for r 6= 0,
ar(y, s) = 2|r|s−1/2σ1−2s(|r|)

√
yKs−1/2(2π|r|y),

with Ks the K-Bessel function

Ks(y) =
1
2

∫ ∞

0
e−y(t+t−1)/2ts dt

t

and σ1−2s(r) = ∑m|r m1−2s.

Seems like a mess, but the K-Bessel function has some good properties. In particular it
decays really fast; |Ks(y)| ≤ e−y/2Kre(s)(2) for y > 4, and it’s even in s, so Ks(y) = K−s(y).
Also, by integrating by parts we arrive at the recurrence

Ks(y) =
y
2s
(Ks+1(y)− Ks−1(y)).

Proof. Since E(z, ν + 1
2) is automorphic, it satisfies condition (i) by definition. For fixed ν it

is polynomial in z, so it satisfies condition (iii) as well. Condition (ii) is the hard part. If
Re(ν) > 1/2, then the series definition of E(z, s) converges and we don’t have to pass to
the analytic continuation, so we can compute the Laplacian directly from the series. First,
we note that

∆yν+1/2 = −y2(ν + 1/2)(ν− 1/2)yν−3/2 = (1/4− ν2)yν+1/2.

Thus yν+1/2 is an eigenfunction of ∆ with eigenvalue (1/4− ν2). The Laplacian is invariant

under the action of SL(2, R), so for all γ ∈ SL(2, R), im(γ(z))ν+1/2 = yν+1/2

|cz+d|2ν+1 is also an
eigenfunction, with the same eigenvalue. Thus any sum of these is also an eigenfunction
with the same eigenvalue, so in particular

∆E(z, ν + 1/2) = (1/4− ν2)E(z, ν + 1/2),

when Re(ν) > 1/2.
For the rest of the values of ν, we’ll consider the Fourier expansion (see, I told you

we’d need it). We’ll have the same approach of taking things term by term; in this case,
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we’ll prove that each Fourier coefficient ar(y, ν + 1/2)e2πirx is an eigenfunction of ∆ with
eigenvalue 1/4− ν2. When r = 0 we have

a0(y, ν + 1/2) = A(ν + 1/2)yν+1/2 + B(ν + 1/2)y−ν+1/2.

Both yν+1/2 and y−ν+1/2 are eigenfunctions with eigenvalue 1/4− ν2, so a0 must be as
well.

For the terms r 6= 0, we want to show that

∆
√

yKν(2π|r|y)e2πirx = (1/4− ν2)
√

yKν(2π|r|y)e2πirx.

Via some calculus (including doing a change of variables 2π|r|y→ y), this is equivalent to{
y2 ∂2

∂y2 + y
∂

∂y
− (y2 + ν2)

}
Kν(y) = 0.

This is known as Bessel’s differential equation (of the second kind), which is a good context clue
that it should hold for Bessel functions. And in fact, differentiating under the integral of

Ks(y) =
1
2

∫ ∞

0
e−y(t+t−1)/2ts dt

t
gives exactly the result we want (along with applying our integration-by-parts relation
several times).

This completes the proof. �

But wait! As we were doing that example, a differential equation cropped up that
we happened to have a solution to. Solutions to differential equations have uniqueness
properties, so this should let us characterize Maass forms more generally. Let’s instead

begin with an arbitrary Maass form f . Since f (γ(x)) = f (x+ 1) = f (x) when γ =

(
1 x
0 1

)
,

we know that f has a Fourier expansion

f (z) =
∞

∑
r=−∞

ar(y)e2πirx.

We then have the following result:

Theorem 2.3. Let ν ∈ C be such that the eigenvalue of ∆ on f is 1/4− ν2. Then if r 6= 0, the
Fourier coefficient ar(y) is given by

ar(y) = cr
√

yKv(2π|r|y),
for some constant cr.

Proof. For fixed r 6= 0, we can define k : R+ → C by ar(y) =
√

yk(2π|r|y). Doing the
same calculus as before, the eigenfunction condition is the same as requiring that k is a
solution to Bessel’s equation above. Bessel’s equation has two solutions, Kν and Iν, where
Kν decays rapidly and Iν grows exponentially. Our strategy for seeing that is to cite our
troubles away, but here’s some intuition to keep in mind while we do that. If y is large, the
terms in Bessel’s equation with a y2 coefficient dominate, so it looks very much like the
equation d2k

dy2 − k = 0, which has one solution k = e−y that decays rapidly and one solution

k = ey which grows exponentially.
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In any case, we have a growth condition on the Fourier coefficients of a Maass form, so
we must have ar(y) a constant multiple of

√
yKν(2π|r|y). �

This means that we completely understand the Maass cusp forms; if f is a Maass cusp
form, then

f (z) =
∞

∑
r=−∞,r 6=0

ar
√

yKν(2π|r|y)e2πirx,

with ar ∈ C.

3. L-FUNCTIONS OF MAASS FORMS

We’ve characterized (cusp) Maass forms as “determined countably many constant
coefficients,” which is starting to look like something we can slot into an L-function.
One final step we can take is to consider the antiholomorphic ι : H → H given by
ι(x + iy) = −x + iy. This involution preserves spaces of Maass forms with a given
eigenvalue, so we can restrict our view to Maass forms that are also eigenforms with
respect to ◦ι. We have two options, since ι2 = 1; either f ◦ ι = f or f ◦ ι = − f . In the first
case, we say that f is even, and in the second case, we say that f is odd.

Now we really have coefficients indexed by N, so it’s natural to define the L-function

L(s, f ) =
∞

∑
n=1

ann−s,

where we’re assuming that f is a cusp form and is either odd or even. This L-function
(which can be proven to be convergent for Re(s) > 1 using the Rankin-Selberg method)
has analytic continuation to the complex plane, as well as a functional equation. These
results are important, but we’ve seen similar things in this seminar, so I’m just going to
state the functional equation here, rather than proving it.

Proposition 3.1. Let f be a Maass cusp form with eigenvalue 1
4 − ν2. Let ε = 0 if f is even and

−1 if f is odd. Let

Λ(s, f ) = π−sΓ
(

s + ε + ν

2

)
Γ
(

s + ε− ν

2

)
L(s, f ).

Then Λ(s, f ) has analytic continuation to all s and satisfies

Λ(s, f ) = (−1)εΛ(1− s, f ).

In any case, now we have an L-function! This is great news. In many cases the strategy
for understanding arithmetic sequences is to slot them into some sort of L-function, and
then to glean properties about the arithmetic sequences from what we can understand
about the L-function. Since Maass forms aren’t holomorphic, the bounding constraints on
the Fourier coefficients are weaker, which broadens the scope of their power.

4. FURTHER DIRECTIONS

Here’s one example of Maass forms coming from a different direction. Maass constructed
certain Maass forms from GL(1) of a quadratic extension, which in some sense is predicted
by Langlands theory.
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Remark 4.1. One question you could ask is if all Maass forms are of this type. The answer
to that question comes from looking at the spectrum of the Laplacian operator.

Since the Laplacian is positive semidefinite, its eigenvalues of the form λ = 1
4 − ν2 must

be real and nonnegative, which in turn means that ν is either purely imaginary or real
of absolute value ≤ 1/2. If λ < 1/4, i.e. ν ∈ R>0, then ν is an exceptional eigenvalue; in
1965, Selberg showed that there are no exceptional eigenvalues with respect to the group
SL(2, R) and conjectured that for other congruence subgroups there are also none. This is
precisely analogous to the Ramanujan conjecture for Fourier coefficients of modular forms.

For larger eigenvalues, the spectrum of ∆ is discrete when Γ�H is compact. In this case
the Selberg trace formula (analogous to the Poisson summation formula) gives an estimate
for the density of these eigenvalues; that estimate shows that there have to be more than
the eigenforms we just mentioned Maass constructing.

Let’s see a little bit about how this construction works. Let F be a real quadratic field
with discriminant D and (narrow) class number one. We start with a Hecke character ψ of
F, i.e. a map ψ : R/I → C, where R is the ring of integers of F and I ⊆ R is an ideal. The
associated Maass form is then

θψ(z) =

{
∑J ψ(J)

√
yKν(2πN(J)y) cos(2πN(J)x) if ε = 0

∑J ψ(J)
√

yKν(2πN(J)y) sin(2πN(J)x) if ε = 1,

where, loosely speaking, ε is a sign of the Hecke character.
This vague exposition has skipped over many details, but the punchline is the following

result:

Theorem 4.2 (Mass, 1949). The function θψ is a Maass cusp form for the group Γ0(D).
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