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A question

Let δ ą 0 and let Q ą 1{δ. Fix k P Ně2. Let Spkq be the number of k-tuples
´

a1
q1
, . . . , ak

qk

¯

that satisfy:

qi P rQ, 2Qs for all i

ai
qi
P p0, 1q is a fraction in lowest terms with

›

›

›

ai
qi

›

›

›
ď δ

řk
i“1

ai
qi
P Z

How big is this set, in terms of δ and Q?

When k “ 2, a1
q1
`

a2
q2
“ 1 implies that q1 “ q2 and a1 “ q1 ´ a2, so there are

Q2δ solutions.
When k is even, the main term comes from pairing fractions, so that
a1
q1
“ 1´ a2

q2
, a3

q3
“ 1´ a4

q4
, and so on, so that Spkq „ Qkδk{2.

What about when k is odd?
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The distribution of primes in short intervals

Motivating Question

Consider intervals of size h, with h “ opNq and h{logN Ñ8 as N Ñ8.
What is the distribution of πpn ` hq ´ πpnq for n ď N?
What is the distribution of ψpn ` hq ´ ψpnq for n ď N?

Cramér model answer

If we model the primes by saying each n is independently prime with probability
1

log n
, then the distribution of ψpn ` hq ´ ψpnq would be Gaussian with mean

„ h and variance „ h logN.
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Testing the Cramér model

Here’s the (normalized) distribution of ψpn ` hq ´ ψpnq for 1 ď n ď 107, with
h “

?
107. The red line is the Gaussian with mean h and variance h log 107.



Hardy–Littlewood conjecture

Hardy–Littlewood Conjecture

Let D “ td1, . . . , dku be a sequence of distinct integers. As N Ñ8,
ÿ

nďN

k
ź

i“1

Λpn ` di q “ SpDqN ` opNq

where SpDq “
ź

p

1´ νDppq{p

p1´ 1{pqk

for νDppq is the number of equivalence classes modp occupied by D.

When D “ t0, 2u, Hardy–Littlewood predicts the asymptotic number of twin
primes, via

ÿ

nďN

ΛpnqΛpn ` 2q „ 2

˜

ź

pě3

1´ 2{p

p1´ 1{pq2

¸

N

When D “ t0, 1u, SpDq “ 0, since the factor at p “ 2 is 1´2{2

p1´1{2q2
“ 0. “Either

n or n ` 1 is even, so there are very few consecutive primes.”
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Variance via Hardy–Littlewood

The Hardy–Littlewood conjectures tell us that the variance is smaller.

1

N

ÿ

nďN

˜

ÿ

`ďh

Λpn ` `q ´ h

¸2

„
1

N

ÿ

nďN

ÿ

`ďh

Λpn ` `q2 `
2

N

ÿ

`1ă`2ďh

ÿ

nďN

Λpn ` `1qΛpn ` `2q ´ h2

„
1

N

ÿ

nďN

ÿ

`ďh

Λpn ` `q2

looooooooooomooooooooooon

„hplog N´1q

` 2
ÿ

`ďh

ph ´ `qSpt0, `uq

loooooooooooomoooooooooooon

„h2´h log h`Bh

´h2

„ h

ˆ

log
N

h
` B ´ 1

˙

The Cramér guess, h logN, is bigger than this!
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Testing revisited

Here’s the (normalized) distribution of ψpn ` hq ´ ψpnq for 1 ď n ď 107, with
h “

?
107. The red line is the Gaussian with mean h and variance h log 107; the

green line has mean h and variance 1
2
h log 107

` hpB ´ 1q.



Sums of Singular Series

Moral: Sums of S give us information about the moments of the distribution.

In 2004, Montgomery and Soundararajan showed, assuming Hardy–Littlewood,
that the moments of the distribution of primes in short intervals converge to
the moments of a Gaussian with variance hplogpN{hq ` B ´ 1q. Their work
depends on the following key result:

Theorem (Montgomery & Soundararajan, 2004)

For D Ď N, let S0pDq “
ř

JĂDp´1q|DzJ |SpJ q, and let

Rkphq :“
ÿ

d1,...,dk
1ďdiďh
distinct

S0pDq.

Then for any k P N,

Rkphq “ µkp´h log h ` pB ` 1qhqk{2 ` Ok,εph
k{2´1{p7kq`ε

q.

For k odd, we don’t know the asymptotic size of Rkphq; we just have
Rkphq “ Ok,εph

k{2´1{p7kq`ε
q.
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Odd moments: beyond square-root cancellation

Conjecture (K., Lemke Oliver and Soundararajan)

For k odd,
Rkphq — hpk´1q{2

plog hqpk`1q{2

For k “ 3, here is R3phq (in black) plotted against 0.373727hplog hq2 (dashed
in red).



Odd moments: beyond square-root cancellation

Conjecture (K., Lemke Oliver and Soundararajan)

For k odd,
Rkphq — hpk´1q{2

plog hqpk`1q{2

Theorem (K.)

R3phq “ Ophplog hq5q.



Techniques: Adding Fractions

Rkphq «
ÿ

q1,...,qk
qią1

˜

k
ź

i“1

µpqi q

φpqi q

¸

ÿ

a1,...,ak
1ďaiďqi
pai ,qi q“1
ř

i ai {qiPZ

E

ˆ

a1
q1

˙

¨ ¨ ¨E

ˆ

ak
qk

˙

,

where Epαq “
řh

m“1 epmαq.
Epαq is about h if }α} ď 1

h
and small otherwise.

Rkphq «
ÿ

q1,...,qk
qią1

˜

k
ź

i“1

µpqi q

φpqi q

¸

hk#

#

1 ď ai ď qi :

›

›

›

›

ai
qi

›

›

›

›

ď
1

h
, pai , qi q “ 1,

ÿ

i

ai
qi
P Z

+

.

Intuition for k “ 3: about φpq1q
1
h

choices for a1, and φpq2q
1
h

choices for a2.
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The problem in Fqrts

primes in Z irreducible polynomials in Fqrts

|n| |F ptq| :“ qdeg F

interval pn, n ` hq I pF ptq, hq :“ tGptq : |F ´ G | ă hu
h “ q`

SpDq “
ź

p

1´ νppDq{p
p1´ 1{pqk

SpDq “
ź

P

1´ νPpDq{|P|
p1´ 1{|P|qk

Rkphq “
ÿ

1ďd1,...,dkďh
distinct

S0pd1, . . . , dkq Rkphq “
ÿ

D1,...,DkPFqrts
1ď|Di |ďh
distinct

S0pD1, . . . ,Dkq

Rkphq — hpk´1q{2
plog hqpk`1q{2 Rkphq — hpk´1q{2

plog hqpk`1q{2

for k odd for k odd
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Function field benefits

In Fqrts,

Rkphq «
ÿ

Q1,...,QkPFqrts
|Qi |ą1
monic

k
ź

i“1

µpQi q

φpQi q

ÿ

A1,...,Ak
|Ai |ă|Qi |

pAi ,Qi q“1
ř

i Ai {Qi“0

E

ˆ

A1

Q1

˙

¨ ¨ ¨E

ˆ

Ak

Qk

˙

For αptq “ Fptq
Gptq

P Fqptq, Epαq “
ř

MPIp0,hq epMαq

For respαq the coefficient of 1
t

in the Laurent series expansion of α,
epαq “ expp2πi ¨ trprespαqqq

Lemma (Hayes, 1966)

Let α P Fqptq with |α| ď
1
q
. Then

Epαq “

#

h if |α| ă 1
h

0 if |α| ě 1
h
.
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Function field results

Theorem (K.)

Fix q. As hÑ8,
R3phq “ Ophplog hq19{2q

and for all ε ą 0,
R5phq “ Oεph

2`ε
q.



Techniques: Fifth moment bound

We want to bound

R5phq « h5
ÿ

Q1,...,Qk
|Qi |ą1
monic

k
ź

i“1

µpQi q

φpQi q
#

#

Ai mod Qi :

ˇ

ˇ

ˇ

ˇ

Ai

Qi

ˇ

ˇ

ˇ

ˇ

ă ´h, pAi ,Qi q “ 1,
ÿ

i

Ai

Qi
“ 0

+

.

The adaptation of the work of Montgomery–Soundararajan and
Montgomery–Vaughan gives a sharp enough bound for the sum restricted over
all terms Q1, . . . ,Qk except those such that:

|Qi | ě h for all i

no three Qi ’s are equal

for any i , j , either Qi “ Qj or
ˇ

ˇ

ˇ

Qi
pQi ,Qj q

ˇ

ˇ

ˇ
ě h and |pQi ,Qjq| ă h{2
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Techniques cont’d: Fifth moment bound

For a tuple Q1, ...Q5,

|Qi | ě h for all i

no three Qi ’s are equal

for any i , j , either Qi “ Qj or
ˇ

ˇ

ˇ

Qi
pQi ,Qj q

ˇ

ˇ

ˇ
ě h and |pQi ,Qjq| ă h{2

implies that, possibly after reordering,
ˇ

ˇ

ˇ

Q2
pQ2,Q1q

ˇ

ˇ

ˇ
ě h and

ˇ

ˇ

ˇ

Q3
pQ3,Q1Q2q

ˇ

ˇ

ˇ
ě h{2.

Strategy: Count options for A1{Q1, then remaining options for A2{Q2 after
accounting for what has already been determined, then remaining options for
A3{Q3.
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accounting for what has already been determined, then remaining options for
A3{Q3.



An application

Lemke Oliver and Soundararajan (2016) conjecture that consecutive primes in
arithmetic progressions exhibit biases. With πpx0q “ 108, they have the
following data:

a b πpx0; 10, pa, bqq
1 1 4623042

3 7429438
7 7504612
9 5442345

3 1 6010982
3 4442562
7 7043695
9 7502896

a b πpx0; 10, pa, bqq
7 1 6373981

3 6755195
7 4439355
9 7431870

9 1 7991431
3 6372941
7 6012739
9 4622916

Showing that sums of three-term singular series are small improves their
heuristic.
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Further questions

Question 1.

Let δ ą 0 and Q ą 1{δ. For k odd, what is

#

#

q1, . . . , qk P rQ, 2Qs, 1 ď ai ď qi :

›

›

›

›

ai
qi

›

›

›

›

ď δ,
ÿ

i

ai
qi
P Z

+

?

Question 2.

For δ ą 0,Q ą 1{δ, let J1, . . . , Jk Ď r0, 1s be intervals with |Ji | ě δ. What is

#

#

q1, . . . , qk P rQ, 2Qs, 1 ď ai ď qi :
ai
qi
P Ji ,

ÿ

i

ai
qi
P Z

+

?
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Thank you!


