Odd Moments in the Distribution of Primes

Vivian Kuperberg

Tel Aviv University



Let 6 > 0 and let @ > 1/6. Fix k € N>2. Let S(k) be the number of k-tuples

a
(E} e ) that satisfy:

m g e[Q, ]foralli

€(0,1)i

u Zl 1 Zl EZ
How big is this set, in terms of § and Q7?




Let 6 > 0 and let @ > 1/6. Fix k € N>2. Let S(k) be the number of k-tuples
(ﬂ e ) that satisfy:

q’

€@, ]foralli
€(0,1)i

= Z' 1 Z’ e”Z
How big is this set, in terms of § and Q7?
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How big is this set, in terms of § and Q7?

When k = 2, % + :—; = 1 implies that g1 = g2 and a1 = q1 — az, so there are
Q25 solutions.

When k is even, the main term comes from pairing fractions, so that
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What about when k is odd?



Motivating Question

Consider intervals of size h, with h = o(N) and h/log N — o0 as N — 0.
What is the distribution of w(n + h) — m(n) for n < N?

What is the distribution of ¥(n + h) — 1 (n) for n < N?



Motivating Question

Consider intervals of size h, with h = o(N) and h/log N — o0 as N — 0.
What is the distribution of w(n + h) — m(n) for n < N?
What is the distribution of ¥(n + h) — 1 (n) for n < N?

Cramér model answer

If we model the primes by saying each n is independently prime with probability
L then the distribution of 1 (n -+ h) — +(n) would be Gaussian with mean

logn' )
~ h and variance ~ hlog N.



Testing the Cramér model

Here's the (normalized) distribution of 4 (n + h) — 1 (n) for 1 < n < 107, with
h = +/107. The red line is the Gaussian with mean h and variance hlog 107,

0.0030

0.0025 4

0.0020

0.0015

0.0010

0.0005

0.0000 -
2600 2800 3000 3200 3400 3600 3800



Hardy-Littlewood Conjecture
Let D = {di,...,dk} be a sequence of distinct integers. As N — oo,

ZnAn—i-d)— S(D)N + o(N)

n<N i=

wher 1-vp(p)/p
- H 1 —Dl/P)k

for vp(p) is the number of equivalence classes modp occupied by D.



Hardy-Littlewood Conjecture
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When D = {0, 2}, Hardy-Littlewood predicts the asymptotic number of twin

primes, via .
S AMAn +2) ~ 2 (H ﬁ) N

n<N p=3



Hardy—Littlewood conjecture

Hardy-Littlewood Conjecture

Let D = {d,...,dk} be a sequence of distinct integers. As N — o0,
K
Z H/\(n + d;j) = 6(D)N + o(N)
n<N i=1
where 1—vp(p)/p
&(D) = "
®) =117/

for vp(p) is the number of equivalence classes modp occupied by D.

When D = {0, 2}, Hardy-Littlewood predicts the asymptotic number of twin

primes, via 1-2/p
D AMA(n +2) ~ 2 (H (1_1/,))2) N

n<N p=3

When D = {0,1}, (D) = 0, since the factor at p =2 is (11:12/22)2 = 0. “Either
nor n+1is even, so there are very few consecutive primes.”



The Hardy-Littlewood conjectures tell us that the variance is smaller.
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The Hardy-Littlewood conjectures tell us that the variance is smaller.

—Z <Z/\n+€ —h)

n<N \¢<h

NZZAnJré)Jr DT Y A+ )N+ ) — K

n<N¢<h 01 <ly<hn<N

~ DDA+ 0 +2) (h—0&({0,£}) — K

n<N £<h £<h
N

| [y

~h(log N—1) ~h2—hlog h+Bh



The Hardy-Littlewood conjectures tell us that the variance is smaller.

—Z <Z/\n+€ —h)

n<N \¢<h

NZZAnJré)Jr DT Y A+ )N+ ) — K

n<N¢<h 01 <ly<hn<N

~ DDA+ 0 +2) (h—0&({0,£}) — K

n<N £<h £<h
N

| [y

~h(log N—1) ~h2—hlog h+Bh

~h(log%+B—1)

The Cramér guess, hlog N, is bigger than this!



Testing revisited

Here's the (normalized) distribution of 1 (n + h) — 1 (n) for 1 < n < 107, with
h = 4/107. The red line is the Gaussian with mean h and variance hlog 107; the
green line has mean h and variance Jhlog 10" + h(B — 1).
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Moral: Sums of & give us information about the moments of the distribution.



Sums of Singular Series

Moral: Sums of & give us information about the moments of the distribution.
In 2004, Montgomery and Soundararajan showed, assuming Hardy—Littlewood,
that the moments of the distribution of primes in short intervals converge to
the moments of a Gaussian with variance h(log(N/h) + B — 1). Their work
depends on the following key result:

Theorem (Montgomery & Soundararajan, 2004)
For D N, let Go(D) = Y, p(—1)PVI&(T), and let
Re(h) == > (D).
dyye.ydy

1<d;<h
distinct

Then for any k € N,
Ri(h) = pk(—hlog h + (B + 1)h)*/? + Oy o (h/27Y/ T+,



Sums of Singular Series

Moral: Sums of & give us information about the moments of the distribution.
In 2004, Montgomery and Soundararajan showed, assuming Hardy—Littlewood,
that the moments of the distribution of primes in short intervals converge to
the moments of a Gaussian with variance h(log(N/h) + B — 1). Their work
depends on the following key result:

Theorem (Montgomery & Soundararajan, 2004)
For D N, let Go(D) = Y, p(—1)PVI&(T), and let
Re(h) == > (D).
dyye.ydy

1<d;<h
distinct

Then for any k € N,
Ri(h) = pk(—hlog h + (B + 1)h)*/? + Oy o (h/27Y/ T+,

For k odd, we don't know the asymptotic size of Ri(h); we just have
Rk(h) _ Ok‘s(hk/Zfl/(W()Jrs).



Conjecture (K., Lemke Oliver and Soundararajan)

For k odd,
Rk(h) — h(k—l)/2(|og h)(k+1)/2

For k = 3, here is R3(h) (in black) plotted against 0.373727h(log h)? (dashed
in red).
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Conjecture (K., Lemke Oliver and Soundararajan)

For k odd,
Ric(h) = h*~V(log h) < +1)/?

Theorem (K.)

Rs(h) = O(h(log h)®).



k
i) 2, £(5) (@)
Ri( — E(=)---El—]),
H quzz, (H ¢(q aan:wak @ Gk
q;>1 1<aj<gq;
(air9/)=1
> ai/qi€Z
where E(a) = 3" . e(ma).
E(a) is about h if |o < % and small otherwise.
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Intuition for k = 3: about ¢(g1)+ choices for a1, and ¢(q2) choices for a,.



primes in Z irreducible polynomials in F4[t]
|| [F(t)] := g™
interval (n, n + h) I(F(t),h) :={G(t): |F— G| < h}
h=4q"
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primes in Z irreducible polynomials in F4[t]
|n| [F(t)] := g™
interval (n, n + h) I(F(t),h) :={G(t): |F— G| < h}
h=4q"
L —wv(D)/p —ve(D)/|P]|
(D) = | | 25 S(D _
Y S 0k ® -1 55w
Ri(h) = Go(dr,...,de) | Re(h) = &o(Dy, ..., D)
1<dy,...,dx<h Dy,..., DyeFq[t]
distinct 1<|D;|<h
distinct

Rk(h) - h(k—l)/Z(Iog h)(k+1)/2
for k odd

Rk(h) - h(k—l)/Z(Iog h)(k+1)/2
for k odd
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monic (A1,Q)=1

2 Ai/Qi=0

m For aft) = g(% € Fq(t), E(@) = Xues(o.n) e(Ma)

m For res(a) the coefficient of 1 in the Laurent series expansion of a,
e(a) = exp(27i - tr(res(e)))



CREE SO ORI CS

Q1,...,QuEFq[t] i=1 1 Ax
1Qj|>1 |Ail<|Qi
monic (A1,Q)=1

2 Ai/Qi=0

m For aft) = EJ(% € Fq(t), E(@) = Xues(o.n) e(Ma)

m For res(a) the coefficient of 1 in the Laurent series expansion of a,
e(a) = exp(27i - tr(res(e)))
Lemma (Hayes, 1966)
Let a € Fg(t) with |a| < (11. Then

o
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Theorem (K.)

Fix q. As h — oo,
Rs(h) = O(h(log h)**)

and for all e > 0,
Rs(h) = O-(h**9).



We want to bound
w(Qj) _ A
E | |¢(Q: {A, mod Q; : _Q

h, (A, Q) = 120 }



We want to bound

QI Ai
Rs(h) ~ Q) {A,- mod Q: : ‘
w3 142

[Qi[>1
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The adaptation of the work of Montgomery—Soundararajan and
Montgomery—Vaughan gives a sharp enough bound for the sum restricted over
all terms @1, ..., Qx except those such that:

m |Qi| = hforall i

m no three Q;'s are equal

m for any i, j, either Q; = Q; or ’ﬁm’ > hand |(Qi, Q)| < h/2



For a tuple @1, ...Qs,
m |Qi| = hforall i

m no three Q;'s are equal

m for any i,j, either Q; = Q; or ’ﬁb’ = hand [(Qi, Q)| < h/2
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For a tuple @1, ...Qs,
m |Qi| = hforall i

m no three Q;'s are equal

m for any i,j, either Q; = Q; or ’ﬁiﬁ’ = hand |(Q;, Q)| < h/2

implies that, possibly after reordering,
h and

@
(02,01)‘ =

Q3
—<oa,oloz>‘ > h/2.

Strategy: Count options for A;/Q1, then remaining options for A>/Q, after
accounting for what has already been determined, then remaining options for

As/Qs.



Lemke Oliver and Soundararajan (2016) conjecture that consecutive primes in
arithmetic progressions exhibit biases. With 7(xp) = 108, they have the
following data:

a b | m(x;10,(a,b)) a b | 7(x0;10,(a,b))
1 1 | 4623042 7 1| 6373981

3 | 7429438 3 | 6755195

7 | 7504612 7 | 4439355

9 | 5442345 9 | 7431870
3 1| 6010982 9 1 | 7991431

3 | 4442562 3 | 6372941

7 | 7043695 7 | 6012739

9 | 7502896 9 | 4622916




Lemke Oliver and Soundararajan (2016) conjecture that consecutive primes in
arithmetic progressions exhibit biases. With 7(xp) = 108, they have the
following data:

a b | m(x;10,(a,b)) a b | 7(x0;10,(a,b))
1 1 | 4623042 7 1| 6373981

3 | 7429438 3 | 6755195

7 | 7504612 7 | 4439355

9 | 5442345 9 | 7431870
3 1| 6010982 9 1 | 7991431

3 | 4442562 3 | 6372941

7 | 7043695 7 | 6012739

9 | 7502896 9 | 4622916

Showing that sums of three-term singular series are small improves their
heuristic.



Question 1.
Let § > 0 and Q > 1/4. For k odd, what is
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Question 1.
Let § > 0 and Q > 1/4. For k odd, what is

#{q1,~--,qk€[Q 2Q],1<

52—ez}

Question 2.
For 6 > 0,Q > 1/4, let J1,...,Jk € [0,1] be intervals with |Ji| = d. What is

#{ql,-~-,qk€[Q,2Q],1<a; 'a' J,,Z—GZ}



Thank you!



