

Odd Moments in the Distribution of Primes

Vivian Kuperberg

Tel Aviv University

A question

Let $\delta > 0$ and let $Q > 1/\delta$. Fix $k \in \mathbb{N}_{\geq 2}$. Let $S(k)$ be the number of k -tuples $\left(\frac{a_1}{q_1}, \dots, \frac{a_k}{q_k}\right)$ that satisfy:

- $q_i \in [Q, 2Q]$ for all i
- $\frac{a_i}{q_i} \in (0, 1)$ is a fraction in lowest terms with $\left\| \frac{a_i}{q_i} \right\| \leq \delta$
- $\sum_{i=1}^k \frac{a_i}{q_i} \in \mathbb{Z}$

How big is this set, in terms of δ and Q ?

A question

Let $\delta > 0$ and let $Q > 1/\delta$. Fix $k \in \mathbb{N}_{\geq 2}$. Let $S(k)$ be the number of k -tuples $\left(\frac{a_1}{q_1}, \dots, \frac{a_k}{q_k}\right)$ that satisfy:

- $q_i \in [Q, 2Q]$ for all i
- $\frac{a_i}{q_i} \in (0, 1)$ is a fraction in lowest terms with $\left\| \frac{a_i}{q_i} \right\| \leq \delta$
- $\sum_{i=1}^k \frac{a_i}{q_i} \in \mathbb{Z}$

How big is this set, in terms of δ and Q ?

When $k = 2$, $\frac{a_1}{q_1} + \frac{a_2}{q_2} = 1$ implies that $q_1 = q_2$ and $a_1 = q_1 - a_2$, so there are $Q^2\delta$ solutions.

When k is even, the main term comes from pairing fractions, so that $\frac{a_1}{q_1} = 1 - \frac{a_2}{q_2}$, $\frac{a_3}{q_3} = 1 - \frac{a_4}{q_4}$, and so on, so that $S(k) \sim Q^k \delta^{k/2}$.

A question

Let $\delta > 0$ and let $Q > 1/\delta$. Fix $k \in \mathbb{N}_{\geq 2}$. Let $S(k)$ be the number of k -tuples $\left(\frac{a_1}{q_1}, \dots, \frac{a_k}{q_k}\right)$ that satisfy:

- $q_i \in [Q, 2Q]$ for all i
- $\frac{a_i}{q_i} \in (0, 1)$ is a fraction in lowest terms with $\left\| \frac{a_i}{q_i} \right\| \leq \delta$
- $\sum_{i=1}^k \frac{a_i}{q_i} \in \mathbb{Z}$

How big is this set, in terms of δ and Q ?

When $k = 2$, $\frac{a_1}{q_1} + \frac{a_2}{q_2} = 1$ implies that $q_1 = q_2$ and $a_1 = q_1 - a_2$, so there are $Q^2\delta$ solutions.

When k is even, the main term comes from pairing fractions, so that $\frac{a_1}{q_1} = 1 - \frac{a_2}{q_2}$, $\frac{a_3}{q_3} = 1 - \frac{a_4}{q_4}$, and so on, so that $S(k) \sim Q^k \delta^{k/2}$.

What about when k is odd?

The distribution of primes in short intervals

Motivating Question

Consider intervals of size h , with $h = o(N)$ and $h/\log N \rightarrow \infty$ as $N \rightarrow \infty$.

What is the distribution of $\pi(n + h) - \pi(n)$ for $n \leq N$?

What is the distribution of $\psi(n + h) - \psi(n)$ for $n \leq N$?

The distribution of primes in short intervals

Motivating Question

Consider intervals of size h , with $h = o(N)$ and $h/\log N \rightarrow \infty$ as $N \rightarrow \infty$.

What is the distribution of $\pi(n + h) - \pi(n)$ for $n \leq N$?

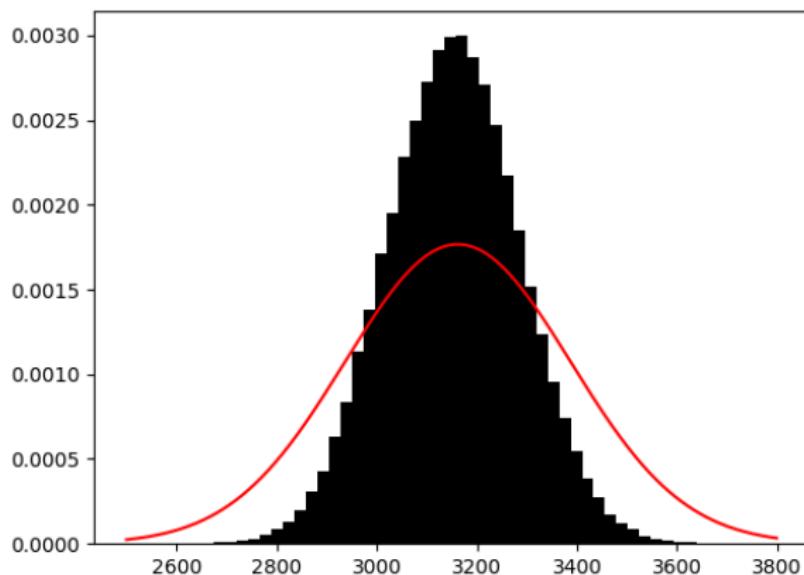
What is the distribution of $\psi(n + h) - \psi(n)$ for $n \leq N$?

Cramér model answer

If we model the primes by saying each n is independently prime with probability $\frac{1}{\log n}$, then the distribution of $\psi(n + h) - \psi(n)$ would be Gaussian with mean $\sim h$ and variance $\sim h \log N$.

Testing the Cramér model

Here's the (normalized) distribution of $\psi(n + h) - \psi(n)$ for $1 \leq n \leq 10^7$, with $h = \sqrt{10^7}$. The red line is the Gaussian with mean h and variance $h \log 10^7$.



Hardy–Littlewood conjecture

Hardy–Littlewood Conjecture

Let $\mathcal{D} = \{d_1, \dots, d_k\}$ be a sequence of distinct integers. As $N \rightarrow \infty$,

$$\sum_{n \leq N} \prod_{i=1}^k \Lambda(n + d_i) = \mathfrak{S}(\mathcal{D})N + o(N)$$

where

$$\mathfrak{S}(\mathcal{D}) = \prod_p \frac{1 - \nu_{\mathcal{D}}(p)/p}{(1 - 1/p)^k}$$

for $\nu_{\mathcal{D}}(p)$ is the number of equivalence classes $\bmod p$ occupied by \mathcal{D} .

Hardy–Littlewood conjecture

Hardy–Littlewood Conjecture

Let $\mathcal{D} = \{d_1, \dots, d_k\}$ be a sequence of distinct integers. As $N \rightarrow \infty$,

$$\sum_{n \leq N} \prod_{i=1}^k \Lambda(n + d_i) = \mathfrak{S}(\mathcal{D})N + o(N)$$

where

$$\mathfrak{S}(\mathcal{D}) = \prod_p \frac{1 - \nu_{\mathcal{D}}(p)/p}{(1 - 1/p)^k}$$

for $\nu_{\mathcal{D}}(p)$ is the number of equivalence classes $\bmod p$ occupied by \mathcal{D} .

When $\mathcal{D} = \{0, 2\}$, Hardy–Littlewood predicts the asymptotic number of twin primes, via

$$\sum_{n \leq N} \Lambda(n)\Lambda(n+2) \sim 2 \left(\prod_{p \geq 3} \frac{1 - 2/p}{(1 - 1/p)^2} \right) N$$

Hardy–Littlewood conjecture

Hardy–Littlewood Conjecture

Let $\mathcal{D} = \{d_1, \dots, d_k\}$ be a sequence of distinct integers. As $N \rightarrow \infty$,

$$\sum_{n \leq N} \prod_{i=1}^k \Lambda(n + d_i) = \mathfrak{S}(\mathcal{D})N + o(N)$$

where

$$\mathfrak{S}(\mathcal{D}) = \prod_p \frac{1 - \nu_{\mathcal{D}}(p)/p}{(1 - 1/p)^k}$$

for $\nu_{\mathcal{D}}(p)$ is the number of equivalence classes $\bmod p$ occupied by \mathcal{D} .

When $\mathcal{D} = \{0, 2\}$, Hardy–Littlewood predicts the asymptotic number of twin primes, via

$$\sum_{n \leq N} \Lambda(n)\Lambda(n+2) \sim 2 \left(\prod_{p \geq 3} \frac{1 - 2/p}{(1 - 1/p)^2} \right) N$$

When $\mathcal{D} = \{0, 1\}$, $\mathfrak{S}(\mathcal{D}) = 0$, since the factor at $p = 2$ is $\frac{1-2/2}{(1-1/2)^2} = 0$. “Either n or $n+1$ is even, so there are very few consecutive primes.”

Variance via Hardy–Littlewood

The Hardy–Littlewood conjectures tell us that the variance is smaller.

$$\frac{1}{N} \sum_{n \leq N} \left(\sum_{\ell \leq h} \Lambda(n + \ell) - h \right)^2$$

Variance via Hardy–Littlewood

The Hardy–Littlewood conjectures tell us that the variance is smaller.

$$\begin{aligned} & \frac{1}{N} \sum_{n \leq N} \left(\sum_{\ell \leq h} \Lambda(n + \ell) - h \right)^2 \\ & \sim \frac{1}{N} \sum_{n \leq N} \sum_{\ell \leq h} \Lambda(n + \ell)^2 + \frac{2}{N} \sum_{\ell_1 < \ell_2 \leq h} \sum_{n \leq N} \Lambda(n + \ell_1) \Lambda(n + \ell_2) - h^2 \end{aligned}$$

Variance via Hardy–Littlewood

The Hardy–Littlewood conjectures tell us that the variance is smaller.

$$\begin{aligned} & \frac{1}{N} \sum_{n \leq N} \left(\sum_{\ell \leq h} \Lambda(n + \ell) - h \right)^2 \\ & \sim \frac{1}{N} \sum_{n \leq N} \sum_{\ell \leq h} \Lambda(n + \ell)^2 + \frac{2}{N} \sum_{\ell_1 < \ell_2 \leq h} \sum_{n \leq N} \Lambda(n + \ell_1) \Lambda(n + \ell_2) - h^2 \\ & \sim \underbrace{\frac{1}{N} \sum_{n \leq N} \sum_{\ell \leq h} \Lambda(n + \ell)^2}_{\sim h(\log N - 1)} + \underbrace{2 \sum_{\ell \leq h} (h - \ell) \mathfrak{S}(\{0, \ell\}) - h^2}_{\sim h^2 - h \log h + Bh} \end{aligned}$$

Variance via Hardy–Littlewood

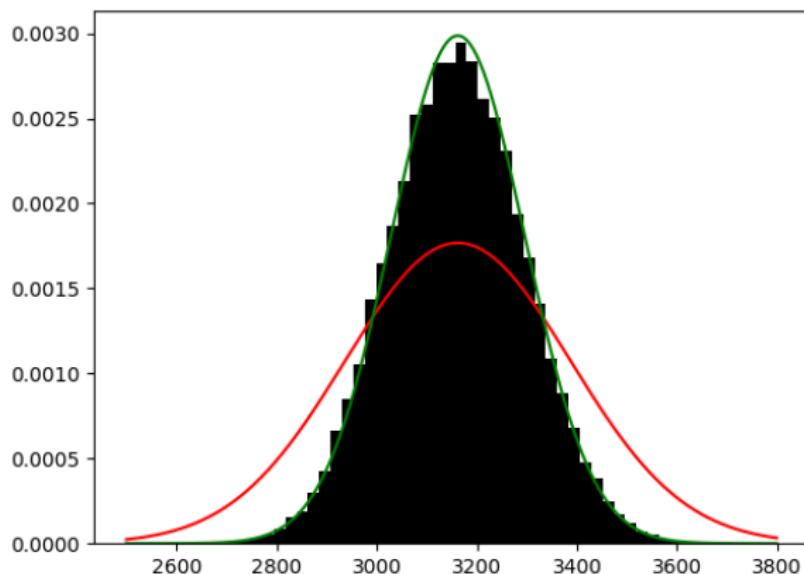
The Hardy–Littlewood conjectures tell us that the variance is smaller.

$$\begin{aligned} & \frac{1}{N} \sum_{n \leq N} \left(\sum_{\ell \leq h} \Lambda(n + \ell) - h \right)^2 \\ & \sim \frac{1}{N} \sum_{n \leq N} \sum_{\ell \leq h} \Lambda(n + \ell)^2 + \frac{2}{N} \sum_{\ell_1 < \ell_2 \leq h} \sum_{n \leq N} \Lambda(n + \ell_1) \Lambda(n + \ell_2) - h^2 \\ & \sim \underbrace{\frac{1}{N} \sum_{n \leq N} \sum_{\ell \leq h} \Lambda(n + \ell)^2}_{\sim h(\log N - 1)} + \underbrace{2 \sum_{\ell \leq h} (h - \ell) \mathfrak{S}(\{0, \ell\}) - h^2}_{\sim h^2 - h \log h + Bh} \\ & \sim h \left(\log \frac{N}{h} + B - 1 \right) \end{aligned}$$

The Cramér guess, $h \log N$, is bigger than this!

Testing revisited

Here's the (normalized) distribution of $\psi(n+h) - \psi(n)$ for $1 \leq n \leq 10^7$, with $h = \sqrt{10^7}$. The red line is the Gaussian with mean h and variance $h \log 10^7$; the green line has mean h and variance $\frac{1}{2}h \log 10^7 + h(B-1)$.



Sums of Singular Series

Moral: Sums of \mathfrak{S} give us information about the moments of the distribution.

Sums of Singular Series

Moral: Sums of \mathfrak{S} give us information about the moments of the distribution. In 2004, Montgomery and Soundararajan showed, assuming Hardy–Littlewood, that the moments of the distribution of primes in short intervals converge to the moments of a Gaussian with variance $h(\log(N/h) + B - 1)$. Their work depends on the following key result:

Theorem (Montgomery & Soundararajan, 2004)

For $\mathcal{D} \subseteq \mathbb{N}$, let $\mathfrak{S}_0(\mathcal{D}) = \sum_{\mathcal{J} \subset \mathcal{D}} (-1)^{|\mathcal{D} \setminus \mathcal{J}|} \mathfrak{S}(\mathcal{J})$, and let

$$R_k(h) := \sum_{\substack{d_1, \dots, d_k \\ 1 \leq d_i \leq h \\ \text{distinct}}} \mathfrak{S}_0(\mathcal{D}).$$

Then for any $k \in \mathbb{N}$,

$$R_k(h) = \mu_k(-h \log h + (B + 1)h)^{k/2} + O_{k,\varepsilon}(h^{k/2-1/(7k)+\varepsilon}).$$

Sums of Singular Series

Moral: Sums of \mathfrak{S} give us information about the moments of the distribution. In 2004, Montgomery and Soundararajan showed, assuming Hardy–Littlewood, that the moments of the distribution of primes in short intervals converge to the moments of a Gaussian with variance $h(\log(N/h) + B - 1)$. Their work depends on the following key result:

Theorem (Montgomery & Soundararajan, 2004)

For $\mathcal{D} \subseteq \mathbb{N}$, let $\mathfrak{S}_0(\mathcal{D}) = \sum_{\mathcal{J} \subset \mathcal{D}} (-1)^{|\mathcal{D} \setminus \mathcal{J}|} \mathfrak{S}(\mathcal{J})$, and let

$$R_k(h) := \sum_{\substack{d_1, \dots, d_k \\ 1 \leq d_i \leq h \\ \text{distinct}}} \mathfrak{S}_0(\mathcal{D}).$$

Then for any $k \in \mathbb{N}$,

$$R_k(h) = \mu_k(-h \log h + (B + 1)h)^{k/2} + O_{k,\varepsilon}(h^{k/2-1/(7k)+\varepsilon}).$$

For k odd, we don't know the asymptotic size of $R_k(h)$; we just have $R_k(h) = O_{k,\varepsilon}(h^{k/2-1/(7k)+\varepsilon})$.

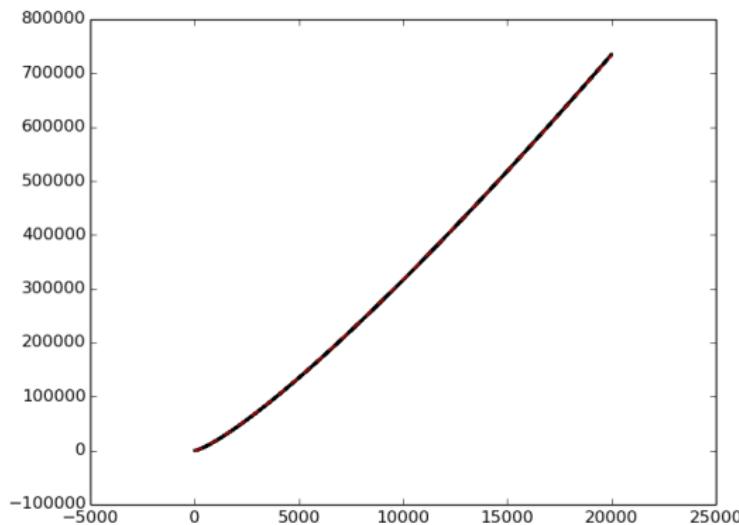
Odd moments: beyond square-root cancellation

Conjecture (K., Lemke Oliver and Soundararajan)

For k odd,

$$R_k(h) \asymp h^{(k-1)/2} (\log h)^{(k+1)/2}$$

For $k = 3$, here is $R_3(h)$ (in black) plotted against $0.373727h(\log h)^2$ (dashed in red).



Odd moments: beyond square-root cancellation

Conjecture (K., Lemke Oliver and Soundararajan)

For k odd,

$$R_k(h) \asymp h^{(k-1)/2} (\log h)^{(k+1)/2}$$

Theorem (K.)

$$R_3(h) = O(h(\log h)^5).$$

Techniques: Adding Fractions

$$R_k(h) \approx \sum_{\substack{q_1, \dots, q_k \\ q_i > 1}} \left(\prod_{i=1}^k \frac{\mu(q_i)}{\phi(q_i)} \right) \sum_{\substack{a_1, \dots, a_k \\ 1 \leq a_i \leq q_i \\ (a_i, q_i) = 1 \\ \sum_i a_i / q_i \in \mathbb{Z}}} E\left(\frac{a_1}{q_1}\right) \cdots E\left(\frac{a_k}{q_k}\right),$$

where $E(\alpha) = \sum_{m=1}^h e(m\alpha)$.

$E(\alpha)$ is about h if $\|\alpha\| \leq \frac{1}{h}$ and small otherwise.

Techniques: Adding Fractions

$$R_k(h) \approx \sum_{\substack{q_1, \dots, q_k \\ q_i > 1}} \left(\prod_{i=1}^k \frac{\mu(q_i)}{\phi(q_i)} \right) \sum_{\substack{a_1, \dots, a_k \\ 1 \leq a_i \leq q_i \\ (a_i, q_i) = 1 \\ \sum_i a_i / q_i \in \mathbb{Z}}} E\left(\frac{a_1}{q_1}\right) \cdots E\left(\frac{a_k}{q_k}\right),$$

where $E(\alpha) = \sum_{m=1}^h e(m\alpha)$.

$E(\alpha)$ is about h if $\|\alpha\| \leq \frac{1}{h}$ and small otherwise.

$$R_k(h) \approx \sum_{\substack{q_1, \dots, q_k \\ q_i > 1}} \left(\prod_{i=1}^k \frac{\mu(q_i)}{\phi(q_i)} \right) h^k \# \left\{ 1 \leq a_i \leq q_i : \left\| \frac{a_i}{q_i} \right\| \leq \frac{1}{h}, (a_i, q_i) = 1, \sum_i \frac{a_i}{q_i} \in \mathbb{Z} \right\}.$$

Techniques: Adding Fractions

$$R_k(h) \approx \sum_{\substack{q_1, \dots, q_k \\ q_i > 1}} \left(\prod_{i=1}^k \frac{\mu(q_i)}{\phi(q_i)} \right) \sum_{\substack{a_1, \dots, a_k \\ 1 \leq a_i \leq q_i \\ (a_i, q_i) = 1 \\ \sum_i a_i / q_i \in \mathbb{Z}}} E\left(\frac{a_1}{q_1}\right) \cdots E\left(\frac{a_k}{q_k}\right),$$

where $E(\alpha) = \sum_{m=1}^h e(m\alpha)$.

$E(\alpha)$ is about h if $\|\alpha\| \leq \frac{1}{h}$ and small otherwise.

$$R_k(h) \approx \sum_{\substack{q_1, \dots, q_k \\ q_i > 1}} \left(\prod_{i=1}^k \frac{\mu(q_i)}{\phi(q_i)} \right) h^k \# \left\{ 1 \leq a_i \leq q_i : \left\| \frac{a_i}{q_i} \right\| \leq \frac{1}{h}, (a_i, q_i) = 1, \sum_i \frac{a_i}{q_i} \in \mathbb{Z} \right\}.$$

Intuition for $k = 3$: about $\phi(q_1) \frac{1}{h}$ choices for a_1 , and $\phi(q_2) \frac{1}{h}$ choices for a_2 .

The problem in $\mathbb{F}_q[t]$

primes in \mathbb{Z}	irreducible polynomials in $\mathbb{F}_q[t]$
$ n $	$ F(t) := q^{\deg F}$
interval $(n, n + h)$	$I(F(t), h) := \{G(t) : F - G < h\}$ $h = q^\ell$
$\mathfrak{S}(\mathcal{D}) = \prod_p \frac{1 - \nu_p(\mathcal{D})/p}{(1 - 1/p)^k}$	$\mathfrak{S}(\mathcal{D}) = \prod_P \frac{1 - \nu_P(\mathcal{D})/ P }{(1 - 1/ P)^k}$

The problem in $\mathbb{F}_q[t]$

primes in \mathbb{Z}	irreducible polynomials in $\mathbb{F}_q[t]$
$ n $	$ F(t) := q^{\deg F}$
interval $(n, n + h)$	$I(F(t), h) := \{G(t) : F - G < h\}$ $h = q^\ell$
$\mathfrak{S}(\mathcal{D}) = \prod_p \frac{1 - \nu_p(\mathcal{D})/p}{(1 - 1/p)^k}$	$\mathfrak{S}(\mathcal{D}) = \prod_P \frac{1 - \nu_P(\mathcal{D})/ P }{(1 - 1/ P)^k}$
$R_k(h) = \sum_{\substack{1 \leq d_1, \dots, d_k \leq h \\ \text{distinct}}} \mathfrak{S}_0(d_1, \dots, d_k)$	$R_k(h) = \sum_{\substack{D_1, \dots, D_k \in \mathbb{F}_q[t] \\ \text{distinct} \\ 1 \leq D_i \leq h}} \mathfrak{S}_0(D_1, \dots, D_k)$
$R_k(h) \asymp h^{(k-1)/2} (\log h)^{(k+1)/2}$ for k odd	$R_k(h) \asymp h^{(k-1)/2} (\log h)^{(k+1)/2}$ for k odd

Function field benefits

In $\mathbb{F}_q[t]$,

$$R_k(h) \approx \sum_{\substack{Q_1, \dots, Q_k \in \mathbb{F}_q[t] \\ |Q_i| > 1 \\ \text{monic}}} \prod_{i=1}^k \frac{\mu(Q_i)}{\phi(Q_i)} \sum_{\substack{A_1, \dots, A_k \\ |A_i| < |Q_i| \\ (A_i, Q_i) = 1 \\ \sum_i A_i / Q_i = 0}} E\left(\frac{A_1}{Q_1}\right) \cdots E\left(\frac{A_k}{Q_k}\right)$$

- For $\alpha(t) = \frac{F(t)}{G(t)} \in \mathbb{F}_q(t)$, $E(\alpha) = \sum_{M \in I(0, h)} e(M\alpha)$
- For $\text{res}(\alpha)$ the coefficient of $\frac{1}{t}$ in the Laurent series expansion of α ,
 $e(\alpha) = \exp(2\pi i \cdot \text{tr}(\text{res}(\alpha)))$

Function field benefits

In $\mathbb{F}_q[t]$,

$$R_k(h) \approx \sum_{\substack{Q_1, \dots, Q_k \in \mathbb{F}_q[t] \\ |Q_i| > 1 \\ \text{monic}}} \prod_{i=1}^k \frac{\mu(Q_i)}{\phi(Q_i)} \sum_{\substack{A_1, \dots, A_k \\ |A_i| < |Q_i| \\ (A_i, Q_i) = 1 \\ \sum_i A_i / Q_i = 0}} E\left(\frac{A_1}{Q_1}\right) \cdots E\left(\frac{A_k}{Q_k}\right)$$

- For $\alpha(t) = \frac{F(t)}{G(t)} \in \mathbb{F}_q(t)$, $E(\alpha) = \sum_{M \in I(0, h)} e(M\alpha)$
- For $\text{res}(\alpha)$ the coefficient of $\frac{1}{t}$ in the Laurent series expansion of α ,
 $e(\alpha) = \exp(2\pi i \cdot \text{tr}(\text{res}(\alpha)))$

Lemma (Hayes, 1966)

Let $\alpha \in \mathbb{F}_q(t)$ with $|\alpha| \leq \frac{1}{q}$. Then

$$E(\alpha) = \begin{cases} h & \text{if } |\alpha| < \frac{1}{h} \\ 0 & \text{if } |\alpha| \geq \frac{1}{h}. \end{cases}$$

Function field results

Theorem (K.)

Fix q . As $h \rightarrow \infty$,

$$R_3(h) = O(h(\log h)^{19/2})$$

and for all $\varepsilon > 0$,

$$R_5(h) = O_\varepsilon(h^{2+\varepsilon}).$$

Techniques: Fifth moment bound

We want to bound

$$R_5(h) \approx h^5 \sum_{\substack{Q_1, \dots, Q_k \\ |Q_i| > 1 \\ \text{monic}}} \prod_{i=1}^k \frac{\mu(Q_i)}{\phi(Q_i)} \# \left\{ A_i \bmod Q_i : \left| \frac{A_i}{Q_i} \right| < -h, (A_i, Q_i) = 1, \sum_i \frac{A_i}{Q_i} = 0 \right\}.$$

Techniques: Fifth moment bound

We want to bound

$$R_5(h) \approx h^5 \sum_{\substack{Q_1, \dots, Q_k \\ |Q_i| > 1 \\ \text{monic}}} \prod_{i=1}^k \frac{\mu(Q_i)}{\phi(Q_i)} \# \left\{ A_i \bmod Q_i : \left| \frac{A_i}{Q_i} \right| < -h, (A_i, Q_i) = 1, \sum_i \frac{A_i}{Q_i} = 0 \right\}.$$

The adaptation of the work of Montgomery–Soundararajan and Montgomery–Vaughan gives a sharp enough bound for the sum restricted over all terms Q_1, \dots, Q_k **except** those such that:

- $|Q_i| \geq h$ for all i
- no three Q_i 's are equal
- for any i, j , either $Q_i = Q_j$ or $\left| \frac{Q_i}{(Q_i, Q_j)} \right| \geq h$ and $|(Q_i, Q_j)| < h/2$

Techniques cont'd: Fifth moment bound

For a tuple Q_1, \dots, Q_5 ,

- $|Q_i| \geq h$ for all i
- no three Q_i 's are equal
- for any i, j , either $Q_i = Q_j$ or $\left| \frac{Q_i}{(Q_i, Q_j)} \right| \geq h$ and $|(Q_i, Q_j)| < h/2$

Techniques cont'd: Fifth moment bound

For a tuple Q_1, \dots, Q_5 ,

- $|Q_i| \geq h$ for all i
- no three Q_i 's are equal
- for any i, j , either $Q_i = Q_j$ or $\left| \frac{Q_i}{(Q_i, Q_j)} \right| \geq h$ and $|(Q_i, Q_j)| < h/2$

implies that, possibly after reordering,

- $\left| \frac{Q_2}{(Q_2, Q_1)} \right| \geq h$ and
- $\left| \frac{Q_3}{(Q_3, Q_1 Q_2)} \right| \geq h/2$.

Techniques cont'd: Fifth moment bound

For a tuple Q_1, \dots, Q_5 ,

- $|Q_i| \geq h$ for all i
- no three Q_i 's are equal
- for any i, j , either $Q_i = Q_j$ or $\left| \frac{Q_i}{(Q_i, Q_j)} \right| \geq h$ and $|(Q_i, Q_j)| < h/2$

implies that, possibly after reordering,

- $\left| \frac{Q_2}{(Q_2, Q_1)} \right| \geq h$ and
- $\left| \frac{Q_3}{(Q_3, Q_1 Q_2)} \right| \geq h/2$.

Strategy: Count options for A_1/Q_1 , then remaining options for A_2/Q_2 after accounting for what has already been determined, then remaining options for A_3/Q_3 .

An application

Lemke Oliver and Soundararajan (2016) conjecture that consecutive primes in arithmetic progressions exhibit biases. With $\pi(x_0) = 10^8$, they have the following data:

a	b	$\pi(x_0; 10, (a, b))$	a	b	$\pi(x_0; 10, (a, b))$
1	1	4623042	7	1	6373981
	3	7429438		3	6755195
	7	7504612		7	4439355
	9	5442345		9	7431870
3	1	6010982	9	1	7991431
	3	4442562		3	6372941
	7	7043695		7	6012739
	9	7502896		9	4622916

An application

Lemke Oliver and Soundararajan (2016) conjecture that consecutive primes in arithmetic progressions exhibit biases. With $\pi(x_0) = 10^8$, they have the following data:

a	b	$\pi(x_0; 10, (a, b))$	a	b	$\pi(x_0; 10, (a, b))$
1	1	4623042	7	1	6373981
	3	7429438		3	6755195
	7	7504612		7	4439355
	9	5442345		9	7431870
3	1	6010982	9	1	7991431
	3	4442562		3	6372941
	7	7043695		7	6012739
	9	7502896		9	4622916

Showing that sums of three-term singular series are small improves their heuristic.

Further questions

Question 1.

Let $\delta > 0$ and $Q > 1/\delta$. For k odd, what is

$$\# \left\{ q_1, \dots, q_k \in [Q, 2Q], 1 \leq a_i \leq q_i : \left\| \frac{a_i}{q_i} \right\| \leq \delta, \sum_i \frac{a_i}{q_i} \in \mathbb{Z} \right\}?$$

Further questions

Question 1.

Let $\delta > 0$ and $Q > 1/\delta$. For k odd, what is

$$\# \left\{ q_1, \dots, q_k \in [Q, 2Q], 1 \leq a_i \leq q_i : \left\| \frac{a_i}{q_i} \right\| \leq \delta, \sum_i \frac{a_i}{q_i} \in \mathbb{Z} \right\}?$$

Question 2.

For $\delta > 0, Q > 1/\delta$, let $J_1, \dots, J_k \subseteq [0, 1]$ be intervals with $|J_i| \geq \delta$. What is

$$\# \left\{ q_1, \dots, q_k \in [Q, 2Q], 1 \leq a_i \leq q_i : \frac{a_i}{q_i} \in J_i, \sum_i \frac{a_i}{q_i} \in \mathbb{Z} \right\}?$$

Thank you!